

PICOSECOND LASER FOR QUANTUM DOT EXCITATION

The **PICUS Q** is housed in a standard 19" enclosure and is made for easy integration into your setup / device.

Fiber-coupled outputs allow flexible pulse delivery offside an optical table. The **PICUS Q** is based on Refined`s proprietary fiber technology that has proven its hands-off performance and stability in biomedical research labs around the world.

READY FOR INTEGRATION

- 770 980 nm
- Comfortable fiber delivery
- Optional secondary output up to 1550nm

EFFICIENT QUANTUM DOT PUMPING

- Repetition rate of 80 MHz
- Narrowband filtered output available

ULTRA STABLE

- Pulse to pulse coherence > 98 % visibility
- Active center wavelength stabilization

Applications

Quantum dot pumping Single-photon sources Material sciences

Product Specifications

Optical	
Tuning range	770-980 nm
Pulse to pulse coherence	>98%visibility
Average power	>100mW/>50mW with filter option
Repetition rate	80 +- 0.5 MHz center / +-50 kHz during tuning
Pulse duration	7 - 15 ps
Spectral bandwidth	Typ.1nm; Optionally custom filtering down to 0.1nm
Output fiber	PM780 or NKT Aeroguide-15-PM
Polarization	linear, 100:1
Electrical	
Interfaces	Communication through USB or RS232 Clock/Reprate out for external synchronisation
Software interfaces	GUI and custom serial API, e.g., via Python & Matlab
Mechanical	
Laser head dimension	44x49x13 cm ³
Laser controller dimension	44x45x13 cm ³
Cooling	Air-cooled
Weight	15 kg leaser head / 20kg electronics
Standard umbilical length	1.8 m, 10 cm bending radius

Optional features (specifications preliminary)

Additional filtered output

Filter tuning range	75nm, centered around wavelength of choice
Filter bandwidth	down to 0.1 nm, gaussian shape, independent offset
Filter accuracy	0.01nm resolution; repeatability +- 0.01nm
Filtered output power	bandwidth dependent; typically >3mW for 0.1nm

Additonal NIR - (Idler) output

Tuning range	1130 nm to >1500 nm
Output power	typically 40 - 150mW
Spectral bandwidth	<1nm, typically 0.3 nm
Pulse duration	7-15 ps

info@refined-lasers.com www.refined-lasers.com

Refined Laser Systems GmbH Mendelstrasse 11 48149 Münster Germany

The product is constantly being improved, therefore the specifications are subject to change without notice. Jan. 2024 Rev. 3.4

